x(x+5)+x^2=133

Simple and best practice solution for x(x+5)+x^2=133 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(x+5)+x^2=133 equation:



x(x+5)+x^2=133
We move all terms to the left:
x(x+5)+x^2-(133)=0
We multiply parentheses
x^2+x^2+5x-133=0
We add all the numbers together, and all the variables
2x^2+5x-133=0
a = 2; b = 5; c = -133;
Δ = b2-4ac
Δ = 52-4·2·(-133)
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1089}=33$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-33}{2*2}=\frac{-38}{4} =-9+1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+33}{2*2}=\frac{28}{4} =7 $

See similar equations:

| 2(3y-7)=-4(7-2y) | | 2k=5+k | | x+3.75=111/3 | | 15n^2+6n+9=0 | | 5y−1=3y+17 | | 2r-(5-1)=13+2 | | 8y+3y=11 | | 4(6x+1)=-140 | | 2(a-2)-4=2(a-3) | | -17=6y-5 | | 2x+4=2×+4 | | 3(x-3)+2x=5(x+7)-44 | | 6x-5+10=2x+15-x | | -(2x+5)=143 | | 20x^2+21x+1=0 | | 3x/2-7=x/3 | | 2÷3(6x-3)=2x+4 | | 2(a-2)-4=2 | | 6/x+3+8/x-3=1,2 | | -6(2-7x)=6(7x-6) | | -6x+11=7=10x | | X2-9x+45=0 | | 8=√x | | 5(x+2)-7=5×+3 | | 2b+4b-24=-4b+28+98 | | x+39+x+116=133 | | 6s^2-6s-3=0 | | 7v+3+3v+4=37 | | 16x-4x=2x | | -3(6x+3)=-18+9 | | (n+3)/(2n)=4/5 | | 5m^2-3=0 |

Equations solver categories